Monte Carlo simulation of terpolymerization

F. M. Mirabella Jr

ARCO/Polymers Inc., Monroeville, Pennsylvania 15146, USA (Received 14 February 1977; revised 7 April 1977)

A simulation of terpolymerization, using the Monte Carlo method, and a computer program which performs the calculations for finite and infinite chain length conditions, are described. Terpolymer composition and sequence distributions are given as a function of chain length for two terpolymer systems. It was found that statistical equilibrium is achieved at chain lengths of about 100 units.

INTRODUCTION

In a previous paper¹ a Monte Carlo simulation of copolymerization was described. The present paper describes a Monte Carlo simulation of terpolymerization. Little work has been done on the simulation of the stochastic growth of terpolymers. In this work the initiation and the propagation steps were included in a model which simulates the growth of terpolymer chains of any arbitrarily specified length. A computer program was used to calculate terpolymer compositions and monomer sequence distributions for finite chain length terpolymers, by the Monte Carlo method, and for infinite chain length terpolymers, by the usual probabilistic method^{2,3}.

SIMULATION OF TERPOLYMERIZATION

Three distinct initiation reactions are needed to describe the initiation of the termonomers $(M_1, M_2 \text{ and } M_3)$ in a terpolymerization, assuming one initiation species $(I \cdot)$:

$$\mathbf{I} \cdot + \mathbf{M}_1 \xrightarrow{k_{i1}} \mathbf{I} - \mathbf{M}_1 \cdot \tag{1}$$

$$\mathbf{I} \cdot + \mathbf{M}_2 \xrightarrow{k_{i2}} \mathbf{I} - \mathbf{M}_2 \cdot$$
 (2)

$$\mathbf{I} \cdot + \mathbf{M}_3 \xrightarrow{k_{i3}} \mathbf{I} - \mathbf{M}_3 \cdot$$
(3)

where the initiation rate constants are k_{i1} , k_{i2} and k_{i3} . The initiation rate constants are rarely known. The assumption made in this work was that the initiator selects between monomers 1, 2 and 3 only on the basis of feed composition and relative monomer reactivities toward the same radical. Thus, the initiation probabilities for processes (1) to (3), respectively, are given by:

$$P_{i1} = \frac{I_1 C_1}{I_1 C_1 + I_2 C_2 + I_3 C_3} \tag{4}$$

$$P_{i2} = \frac{I_2 C_2}{I_1 C_1 + I_2 C_2 + I_3 C_3} \tag{5}$$

$$P_{i3} = \frac{I_3 C_3}{I_1 C_1 + I_2 C_1 + I_3 C_3} \tag{6}$$

where I_1 , I_2 and I_3 refer to the normalized relative reactivities of monomers 1, 2 and 3, respectively, toward the same radical and, similarly, C_1 , C_2 and C_3 are the molar concentrations of the monomers in the feed. There are nine propagation reactions which need to be considered in order to describe the terpolymerization propagation steps, assuming that the ultimate unit of a 'living' polymer chain solely determines which monomer unit is added next⁴. These nine propagation reactions lead to six 'ultimate unit' reactivity ratios⁴ and nine conditional probability expressions:

$$P_{11} = \frac{1}{1 + \frac{C_2}{r_{12}C_1} + \frac{C_3}{r_{13}C_1}}$$
(7)

$$P_{12} = \frac{1}{1 + \frac{r_{12}C_1}{C_2} + \frac{r_{12}C_3}{r_{13}C_2}}$$
(8)

$$P_{13} = \frac{1}{1 + \frac{r_{13}C_1}{C_3} + \frac{r_{13}C_2}{r_{12}C_3}}$$
(9)

$$P_{21} = \frac{1}{1 + \frac{r_{21}C_2}{C_1} + \frac{r_{21}C_3}{r_{23}C_1}}$$
(10)

$$P_{22} = \frac{1}{1 + \frac{C_1}{r_{21}C_2} + \frac{C_3}{r_{23}C_2}}$$
(11)

$$P_{23} = \frac{1}{1 + \frac{r_{23}C_1}{r_{21}C_3} + \frac{r_{23}C_2}{C_3}}$$
(12)

$$P_{31} = \frac{1}{1 + \frac{r_{31}C_2}{r_{32}C_1} + \frac{r_{31}C_3}{C_1}}$$
(13)

POLYMER, 1977, Vol 18, September 925

Table 1	Constants used for the	e styrene/butadiene/methyl	methacrylate and	styrene/vinyl	acetate/methyl	acrylate systems
---------	------------------------	----------------------------	------------------	---------------	----------------	------------------

		Original feed co	omposition	Normalized rela- tive reactivity of		
Monomer number	Monomer	Mol %	W %	 monomer with styrene radical*[†] 	Reactivi	ty ratios‡
1	Styrene	33.33	40.31	/1 = 0.2381	$r_{12} = 0.825$	r ₁₃ = 0.485
2	Butadiene	33.33	20.94	$l_2 = 0.3095$	$r_{21} = 1.39$	$r_{23} = 0.75$
3	Methyl methacrylate	33.33	38.75	/ ₃ = 0.4524	$r_{31} = 0.422$	$r_{32} = 0.25$
1	Styrene	33.33	37.59	/ ₁ = 0.4310	r ₁₂ = 6.5	r ₁₃ = 0.75
2	Vinyl acetate	33.33	31.16	$I_2 = 0.0086$	$r_{21} = 0.15$	$r_{23} = 0.03$
3	Methyl acrylate	33.33	31,15	/ ₃ = 0.5604	$r_{31} = 0.18$	$r_{32} = 6.3$

* See equations (4)–(6). [†] Values were calculated by normalizing the values given in ref 6 for each set of three monomers. [‡] Values obtained from ref 7

$$P_{32} = \frac{1}{1 + \frac{r_{32}C_1}{r_{31}C_2} + \frac{r_{32}C_3}{C_2}}$$
(14)

4

$$P_{33} = \frac{1}{1 + \frac{C_1}{r_{31}C_3} + \frac{C_2}{r_{32}C_3}}$$
(15)

where each probability, P_{jk} , refers to a chain ending in monomer *j* adding monomer *k*, and the reactivity ratios, r_{jk} , are numbered as is customary⁵. The sum of each set of three equations (4) to (6), (7) to (9), (10) to (12), and (13) to (15) is unity.

In the Monte Carlo simulation these probabilities are calculated before each event (using the current values of feed composition and the various constants involved) and assigned a proportionate interval between 0 and 1, as described previously¹. A random number generator is then used to produce uniformly distributed random numbers which determine the outcome of each initiation and propagation event¹. A computer program was used to perform these calculations and to compute instantaneous and cumulative terpolymer compositions and monomer sequence distributions. The probabilities expressed in equations (7) to (15) were also used to compute the previously mentioned quantities for the infinite chain length terpolymers by the usual probabilistic method^{2,3}. All computing was done on a CDC 175 computer. A listing of the FORTRAN 4 extended program is available on request.

The Monte Carlo simulation was performed for the terpolymer systems styrene/butadiene/methyl methacrylate (S/B/MMA) and styrene/vinyl acetate/methyl acrylate (S/VA/MA). The simulations were done for chains from 10 to 5000 units long and for infinite chain length. The simulations were done from zero conversion up to the desired conversion in 0.5% molar conversion increments. Thus, in the case of the S/B/MMA system, the growth of 170 chains was simulated from 0 to 85% molar conversion and in the case of the S/VA/MA system the growth of 150 chains was simulated from 0 to 75% molar conversion, at each chain length. *Table 1* gives the values of the constants used. The normalized relative reactivities of the monomers were calculated using values of the relative reactivities of the monomers with the styrene radical^{6*}.

RESULTS AND DISCUSSION

Tables 2 and 3 present the results of the Monte Carlo simulations for the two terpolymer systems, mentioned previously. These data show that as the chain length increases the effect of the initiation step vanishes and statistical equilibrium is approached. At chain lengths of about 100 units and greater, the agreement between composition and sequence distribution data obtained by simulation and infinite chain length data becomes good. This is similar to previous results in which agreement between copolymer simulation data and experimental data became good at chain lengths of about 300 units and greater¹.

CONCLUSIONS

Monte Carlo simulation of terpolymerization can aid in visualizing this extremely complex process. The ability of the model used in the simulation to predict the composition and monomer sequence distributions of chains of finite length depends on whether the model includes the major governing factors of the polymerization. Further study is necessary in order to improve the Monte Carlo simulation of terpolymerization by comparing data from simple simulation models to experimental data and then modifying the models as indicated by the comparison.

^{*} This choice was made because of available data. Relative reactivities with highly electrophilic initiator radicals could be quite different.

Table 2 Composition and sequence distribution data as a function of chain length for the styrene/butadiene/methyl methacrylate system

		Cumulative	terpolymer compo	osition (wt %)					Section	ice distribution				
Chain length	Conversion (mol %)	A-styrene	B-butadiene	C-methyl methacrylate		Diads (number fr	action o	of all diads)		Triads (number frac	tion of all triads		
0	85.0	36.313	22.242	41.444	AB AB AC	= 0.0703 = 0.1893 = 0.2663	88 22 22 C 88 88	= 0.1006 = 0.3156 = 0.0579	AAA AAA AAC BAB BAB CAC	0.0214 0.0259 0.0703 0.0392 0.0865	ABA = 0 ABB = 0 ABC = 0 ABC = 0 BBB = 0 BBC = 0 CBC = 0 CBC = 0	.0259 .0510 .0865 .0984 .0984	ACC BCC B ACC B ACC B ACC B ACC A ACC ACC	0.0577 0.1169 0.0311 0.0769 0.0481 0.0133
20	85.0	37.486	21.875	40.639	AB AB AC	= 0.0811 = 0.1734 = 0.2822	C C B B B	= 0.1031 = 0.3131 = 0.0470	AAA AAB AAC BAAC CAC CAC	 0.0210 0.0443 0.0754 0.0256 0.0795 0.0645 	ABA ABA ABB = 0 ABC = 0 ABC = 0 BBB BBBC = 0 CBC = 0 CBC = 0	.0221 .0500 .0794 .0311 .0950	ACB ACC BCC BCC CCC BCC ACC ACC ACC ACC	0.0556 0.1292 0.0394 0.0703 0.0413 0.0065
100	85.0	37.893	21.854	40.253	AB AB AC	= 0.0848 = 0.1714 = 0.2808	CC B B B C B C B C B C B C C C C C C C	= 0.1021 = 0.3157 = 0.0452	AAA AAB AAC BABB BAB CAC	 0.0245 0.0435 0.0769 0.0769 0.0781 0.0629 	ABA ABA ABB ABC ABC BBBC BBBC CBC CBC CB	.0198 .0507 .02808 .0296 .0953	ACB ACC BCC BCC CCC CCC ACC ACCA ACCA A	0.0574 0.1280 0.0376 0.0723 0.0426 0.0053
500	85.0	37.539	22.342	40.119	AB AC	= 0.0833 = 0.1749 = 0.2727	C C B B B	= 0.1051 = 0.3186 = 0.0455	AAA AAB AAC BAB BAC CAC CAC	 0.0231 0.0467 0.0467 0.0737 0.0737 0.0782 0.0604 	ABA ABB ABB ABC ABC ABC BBB BBB CBBC CBC C	.0216 .0515 .0803 .0324 .0324 .0937	ACB ACB ACCB ACCB ACCA ACCA ACCA ACA	0.0550 0.1267 0.0359 0.0744 0.0430 0.060
1000	85.0	37.588	22.217	40.195	AB AC	= 0.0838 = 0.1734 = 0.2743	C B B	= 0.1045 = 0.3179 = 0.0461	AAA AAAC AAC BAAB CAC CAC	 0.0229 0.0462 0.0755 0.0748 0.0776 0.0776 	ABA ABB ABB ABC ABC BBB BBB CBC CBC CBC	.0218 .0508 .0790 .0319 .0945	ACB ACB ACCB ACCB ACCB ACCA ACCA	0.0533 0.1266 0.0371 0.0743 0.0427 0.062
2000	85.0	37.573	22.312	40.115	AB AC	= 0.0845 = 0.1731 = 0.2726	BB CC CC BC	= 0.1052 = 0.3193 = 0.0454	AAB AAB AAC AAB BAB CAC CBC CBC CAC	 0.0235 0.0471 0.0748 0.0242 0.0776 0.0601 	ABA ABB ABC ABC ABC BBB BBB BBBC BBBC B	.0213 .0514 .0316 .0336 .0959	ACA ACB ACC BCCB ACCB ACCA ACA	0.0550 0.1266 0.0359 0.0749 0.0427 0.0061
8	85.0	37.581	22.313	40.106	AB AC	= 0.0844 = 0.1736 = 0.2723	C C B B	= 0,1050 = 0.3191 = 0.0455	AAA AAAC AAC BAAC BAAC CAC CAC	 0.0234 0.0472 0.0746 0.0244 0.0775 0.0601 	ABA ABA ABB ABC ABBC BBBB CBC CBC CBC CB	.0214 .0514 .0791 .0315 .0954	ACB ACC BCCB ACCB ACCA ACCA ACCA	0.0547 0.1267 0.0362 0.0748 0.0426 0.060

Monte Carlo simulation of terpolymerization: F. M. Mirabella Jr

		Cumulative ter	rpolymer compositi	ion (wt %)								
Chain length	Conversion (mol %)	A, styrene	B, vinyl acetate	C, methyl acrylate		Diads (number fr	action	of all diads)	Sequence distribution Triads	(number fraction of all tria	ds)	
0	75.0	47.939	10.462	41.599	AA AB AC	= 0.1268 = 0.0708 = 0.5533	S S S	= 0.0127 = 0.1387 = 0.0977	AAA = 0.0386 AAB = 0.0168 AAC = 0.1611 BAB = 0.0008 BAC = 0.0562 CAC = 0.1737	ABA = 0.0076 ABB = 0.0076 ABC = 0.0478 BBB = 0.0025 BBC = 0.0134 CBC = 0.0428	ACA ACB ACC ACC ACC ACC	 0.1762 0.0747 0.0149 0.1149 0.0176 0.0252 0.0227
20	75.0	48.635	11.320	40.045	AB AC	= 0.1327 = 0.0736 = 0.5435	CC BC BB	= 0.0142 = 0.1470 = 0.0890	AAA = 0.0414 AAB = 0.0194 AAC = 0.1639 BAB = 0.0015 BAC = 0.0515 CAC = 0.1658	ABA = 0.0073 ABB = 0.0052 ABC = 0.0537 BBB = 0.0029 BBC = 0.0180 CBC = 0.0180 CBC = 0.0383	ACB ACB ACC ACC ACC ACC ACC ACC ACC ACC	 0.1806 0.0730 0.1037 0.1037 0.0207 0.0201
100	75.0	49.246	10.835	39.919	AB AC	= 0.1374 = 0.0672 = 0.5499	CC BC BB	= 0.0140 = 0.1425 = 0.0889	AAA = 0.0440 AAB = 0.0174 AAC = 0.1695 BAB = 0.0015 BAC = 0.0473 CAC = 0.1672	ABA = 0.0050 ABB = 0.0053 ABC = 0.0520 BBB = 0.0023 BBC = 0.0181 CBC = 0.0367	ACB ACB ACC BCC BCC CCC CCC CCC CCC CCC	 0.1850 0.0726 0.1055 0.0175 0.0342 0.0190
500	75.0	49.268	10.816	39.916	AB AC	= 0.1387 = 0.0655 = 0.5482	CC BB	= 0.0133 = 0.1446 = 0.0897	AAA = 0.0462 AAB = 0.0167 AAC = 0.1684 BAB = 0.016 BAC = 0.0455 BAC = 0.0455 CAC = 0.1673	ABA = 0.0056 ABB = 0.0047 ABC = 0.0496 BBB = 0.0024 BBC = 0.0171 CBC = 0.0391	ACB ACB ACC BCC BCC CCC CCC CCC CCC ACC A	 0.1855 0.0711 0.1058 0.1058 0.0193 0.0349 0.0193
1000	75.0	49.319	11.027	39.654	AB AC	= 0.1398 = 0.0678 = 0.5445	CC BC BC	= 0.0143 = 0.1449 = 0.0887	AAA = 0.0469 AAB = 0.0180 AAC = 0.1679 BAB = 0.0017 BAC = 0.0464 CAC = 0.1652	ABA = 0.0060 ABB = 0.0051 ABC = 0.0507 BBB = 0.0027 BBC = 0.0181 CBC = 0.0381	ACA ACB ACC BCC BCC CCC CCC CCC CCC ACC A	 0.1833 0.0719 0.0719 0.1058 0.0190 0.0349 0.0184
2000	75.0	49.359	10.974	39.667	AB AC AC	= 0.1399 = 0.0672 = 0.5454	CC BB	= 0.0140 = 0.1448 = 0.0887	AAA = 0.0470 AAB = 0.0177 AAC = 0.1680 BAB = 0.0016 BAB = 0.0016 BAC = 0.0464 CAC = 0.1655	ABA = 0.0059 ABB = 0.0049 ABC = 0.0506 BBB = 0.0026 BBC = 0.0180 CBC = 0.0381	ACB ACB ACC BCC BCC CCC BCCB	 0.1844 0.0719 0.1047 0.10343 0.0192
8	75.0	49.371	10.990	39.639	AA AB AC	= 0.1396 = 0.0676 = 0.5458	CC B B CC B B	= 0.0140 = 0.1445 = 0.0883	AAA = 0.0467 AAB = 0.0177 AAC = 0.1679 BAB = 0.0016 BAC = 0.0466 BAC = 0.1655 CAC = 0.1655	ABA = 0.0059 ABB = 0.0049 ABC = 0.0507 BBB = 0.0027 BBC = 0.0177 CBC = 0.0379	ACA ACB ACC BCB CCC CCC	 0.1846 0.0719 0.1044 0.1041 0.0342 0.0189

Table 3 Composition and sequence distribution data as a function of chain length for the styrene/vinyl acetate/methyl acrylate system

Monte Carlo simulation of terpolymerization: F. M. Mirabella Jr

REFERENCES

- Mirabella, F. M., Jr. Polymer 1977, 18, 705
 Ham, G. E. J. Polym. Sci. (A-2) 1964, 2735
 Tosi, C. Eur. Polym. J. 1970, 6, 161

- 4 Alfrey, T. Jr and Goldfinger, G. J. Chem. Phys. 1944, 12, 322
- 5 Ham, G. E. 'Copolymerization', (Ed. G. E. Ham), Interscience, New York, 1964, p 32 Walling, C. 'Free Radicals in Solution,' Wiley, New York, 1957,
- 6
- pp 118–119 'Polymer Handbook', (Eds J. Brandrup and E. H. Immergut), Wiley-Intersciene, New York, 1975 7